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THE RIEMANNIAN BARZILAI-BORWEIN METHOD WITH
NONMONOTONE LINE SEARCH AND THE MATRIX GEOMETRIC MEAN

COMPUTATION

BRUNO IANNAZZO† AND MARGHERITA PORCELLI‡

Abstract. The Barzilai-Borwein method, an effective gradient descent method with clever choice of the
step-length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global
convergence of a nonmonotone line-search strategy for Riemannian optimization algorithms is proved under some
standard assumptions. By a set of numerical tests, the Riemannian Barzilai-Borwein method with nonmonotone
line-search is shown to be competitive in several Riemannian optimization problems. When used to compute the
matrix geometric mean, known as the Karcher mean of positive definite matrices, it notably outperforms existing
first-order optimization methods. Riemannian optimization; manifold optimization; Barzilai-Borwein algorithm;
nonmonotone line-search; Karcher mean; matrix geometric mean; positive definite matrix.

1. Introduction. Globally convergent Barzilai-Borwein (BB) methods are well-known op-
timization methods for the solution of unconstrained and constrained optimization problems
formulated in the Euclidean space. These algorithms are rather appealing for their simplicity,
low-cost per iteration (gradient-type algorithms) and good practical performance due to a clever
choice of the step-length ([2, 11, 13, 9]).

The key of success of BB methods lies in the explicit use of first-order information of the
cost function on one side and, on the other side, in the implicit use of second-order information
embedded in the step-length through a rough approximation of the Hessian of the cost function.
This is crucial in the solution of problems where computing the Hessian represents a heavy
burden, as when the problem dimension is large.

For strictly convex quadratic problems, global convergence of the BB method has been
established in [28] while, in the general nonquadratic case, this property is guaranteed if BB is
incorporated in a globalization strategy, see [29]. Due to the nonmonotone behaviour of the cost
function through the BB steps, BB methods are generally combined with nonmonotone line-
search strategies that do not impose a sufficient decrease condition on the cost function at each
step, but rather on the maximum of the cost functions over the last, say, M steps (with M > 1)
([16, 29, 17]). It has been observed that if M is sufficiently large this strategy does not spoil
the BB average rate of convergence ([29, 17]) and yields impressive good practical performance,
especially in comparison with classical conjugate gradient methods, see [29].

Motivated by the nice theoretical and numerical properties of the (globalized) BB methods
in the Euclidean space, we consider here a more general setting: BB methods for Riemannian
manifold optimization based on retractions. Therefore, in this work we address the following
optimization problem

min
x∈M

f(x), (1.1)

where f is a smooth real valued function (the cost function) defined over a Riemannian mani-
fold M.

To the best of our knowledge, globally convergent nonmonotone BB type methods have
been already proposed in Riemannian optimization only for the special case of Stiefel manifolds,
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see [14, 33, 21]. More precisely, in [14] the global convergence of a trust-region nonmonotone
Levenberg-Marquardt algorithm for minimization problems on closed domains is provided and
the application of the proposed method for minimization on Stiefel manifolds results in a BB
method with a nonmonotone trust-region. The papers [21] and [33] are concerned with the BB
method with nonmonotone line-search and the global convergence of the procedure is proved in
[21] for Stiefel manifolds.

As a first contribution of this paper, under mild assumptions we prove global convergence
of general (gradient-related) Riemannian optimization algorithms, when equipped with a non-
monotone line-search strategy. Line-search will be suitably adjusted to fit the framework of
Riemannian manifold optimization and will be performed on the tangent space at a point. We
therefore extend to Riemannian optimization the convergence results proved for the Euclidean
space in [16, 29, 8].

Secondly, we introduce the Riemannian Barzilai-Borwein algorithm, which generalizes the
Euclidean BB method, and discuss the corresponding algorithm embedded in a nonmonotone
line-search strategy.

Thirdly, we apply the proposed algorithm to the computation of the geometric mean of
positive definite matrices, the so called Karcher mean, that is very popular in many areas of
applied mathematics and engineering, see, e.g., part II of [26]. The proposed method is a
first-order algorithm, nevertheless, as pointed-out in [20], the Riemannian Hessian (or its full
approximation) of the cost function defining the Karcher mean of positive definite matrices has
a high computational complexity which makes the use of second-order algorithms prohibitive.

Finally, we benchmark the Riemannian BB over a set of problems involving different manifold
structures and compare it with the trust-region and the steepest-descent line-search algorithms.
Remarkably, in all our experiments, the performance of the proposed algorithm is superior to
those of the existing first-order optimization algorithms for computing the Karcher mean of
positive definite matrices ([31, 20, 5, 34]).

The paper is organized as follows. For later convenience, we recall in Section 2 some concepts
from Riemannian optimization using the language and the tools described in the book by [1].
Section 3 is devoted to the global convergence analysis of the nonmonotone line-search strategy
for gradient-related Riemannian optimization algorithms; then, in Section 4 we introduce the
Riemannian BB algorithm and its globalization via nonmonotone line-search. Section 5 is devoted
to the Karcher mean of positive definite matrices and to the implementation of the Riemannian
BB method for its computation. In Section 6 numerical tests are performed to confirm the good
behaviour of the Riemannian BB method for computing the Karcher mean of positive definite
matrices and the possibility to apply the method to other problems of Riemannian optimization.
Conclusions are drawn in Section 7.

2. Preliminaries on Riemannian optimization. The subject of Riemannian optimiza-
tion is the computation of the minima of a differentiable function f : M → R, where M is
a real Riemannian manifold. The standard nonlinear optimization, which will be referred as
Euclidean optimization, can be interpreted as a special case of Riemannian optimization, where
M = Rn. For the ease of the reader, we briefly recall some of the basic concepts of Riemannian
optimization based on retractions. We refer the reader to the book [1] for a thorough treatise of
the topic.

In Riemannian optimization algorithms, the iterate xk belongs to a manifold M while the
gradient at xk belongs to the tangent space TxkM at xk, isomorphic to an Euclidean space. The
gradient of f related to the geometry of M is denoted by ∇(R)f and defined as follows: for any
point x ∈M, ∇(R)f(x) is the unique element of TxM that satisfies

Df(x)[h] = 〈∇(R)f(x), h〉x, ∀h ∈ TxM,
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where 〈·, ·〉x is the Riemannian scalar product in TxM and Df(x) : TxM→ TxM is the differ-
ential of f at x. In the paper, we refer to ∇(R)f(x) as the Riemannian gradient of f at x and
frequently use the notation g(x) := ∇(R)f(x) and gk := ∇(R)f(xk).

A step of a gradient-like method in Rn involves summing points and gradient vectors. While
in Rn, the concept of moving in the direction of the negative gradient is straightforward, on
a manifold, using the gradient ∇(R)f(xk) to update xk is tricky since xk lies on the manifold
while the gradient belongs to TxkM. Indeed, the next iterate xk+1 ought to be constructed
following a geodesic starting at xk and with tangent vector −∇(R)f(xk), that is a curve γ(t) :
[0, t0)→M, with t0 ∈ (0,∞]. In contrast with the standard gradient-like methods for Euclidean
unconstrained optimization, where t is an arbitrary positive number, in the Riemannian case, t
must be chosen between 0 and t0. Nevertheless, there are special manifolds, said to be geodesically
complete, for which t0 can be always chosen to be ∞.

Geodesics can be followed using the exponential map expx(v), which gives the point γ(1) of
a geodesic γ(t) starting at x = γ(0) and with tangent vector v. Since it is not always easy to
find and follow geodesics, in manifold optimization the exponential map is approximated with
a retraction map and we refer to retraction-based Riemannian optimization. The retraction is
defined as a smooth map R from the tangent bundle TM to M, such that Rx(0x) = x and
DRx(0x) = idTxM, where Rx denotes the restriction of R to TxM, 0x is the zero element of
TxM, idTxM is the identity map on TxM and we have identified the tangent space to TxM with
itself.

The exponential map is a special case of retraction since it satisfies the above properties too.
In practice using a retraction, in lieu of the exponential map, yields the same convergence results
in an optimization algorithm, being possibly much easier to compute. In general, the domain of
R is not necessarily the whole tangent bundle but for each point x we may assume that there is
a neighbourhood of 0x in TxM such that Rx is defined at any point of this neighbourhood.

The step of a gradient-like method based on a retraction is of the form

xk+1 = Rxk(−αkgk),

where αk is a step-length such that −αkgk belongs to the domain of Rxk .
The extension of the Euclidean BB algorithm to the Riemannian setting requires the sum

of gradients evaluated at different points (see Section 4), that is vectors belonging to different
tangent spaces. In retraction-based optimization algorithms, the standard tool to move vectors
from a tangent space to another is the vector transport. Roughly speaking, given two tangent
vectors at x, say vx, wx ∈ TxM, a vector transport T associated with a retraction R, is a smooth
map that generates a point Twx(vx) that belongs to TRx(wx)M, and that is linear with respect
to the argument. For the precise definition of the vector transport, we refer the reader to Sec.
8.1 of [1].

In many algorithms, a vector v ∈ TxM has to be transported to the tangent space TyM,
with y 6= x. Given a vector transport T , for the sake of simplicity, we use the notation Tx→y(v)
to indicate the transport Twx(v), where wx is such that Rx(wx) = y. To ensure the existence of a
wx such that Rx(wx) = y, we have to assume that the retraction has a sufficiently large domain
so as to allow the search step and the vector transport.

A special case of vector transport, well-known in geometry, is the parallel transport that can
be interpreted as a vector transport where the underlying retraction is the exponential map.

3. Nonmonotone line-search in Riemannian optimization. The Armijo line-search
is a standard optimization strategy that consists in successively reducing the step-length (back-
tracking) until a sufficient decrease criterion, called Armijo’s condition, is met. When combined
with a gradient-type algorithm, this strategy guarantees global convergence of the overall proce-
dure under mild assumptions, see e.g. [27].
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In Euclidean geometry, given a point xk ∈ Rn and a search direction dk, the Armijo line-
search strategy is as follows: starting from a fixed step-length λk > 0, compute the smallest
nonnegative integer hk such that

f(xk + σhkλkdk) 6 f(xk) + γσhkλk∇f(xk)T dk,

for a suitable γ ∈ (0, 1) and reduction factor σ ∈ (0, 1), set the current step-length αk = σhkλk
and update xk+1 = xk +αkdk. We have denoted by ∇f(xk) the (Euclidean) gradient of f at xk,
that is the unique vector such that ∇f(xk)Th = Df(xk)[h] for h ∈ Rn.

A generalization of the Armijo line-search to Riemannian manifold optimization can be found
in [1, Sec. 4.2], where the condition to find hk is

f(Rxk(σhkλkdk)) 6 f(xk) + γσhkλk〈gk, dk〉xk , (3.1)

where R is a retraction on M and gk is the Riemannian gradient of f at xk. Then the iterate
is updated as xk+1 = Rxk(αkdk) with αk = σhkλk. This strategy is sometimes referred to as
curvilinear search since, in some sense, it is a search on a curve in M ([33]). Alternatively, it
can be seen as a line-search on the tangent space.

In certain optimization algorithms, such as the BB method, global convergence is still ensured
if one allows the cost function to increase from time to time, while asking that the maximum of
the cost function over the last M > 1 steps decreases. This can be achieved using a nonmonotone
Armijo line-search strategy and choosing hk as the smallest nonnegative integer such that

f(xk + σhkλkdk) 6 max
16j6min{k+1,M}

{f(xk+1−j)}+ γσhkλk∇f(xk)T dk,

where γ ∈ (0, 1) and σ ∈ (0, 1).
The adaptation of the nonmonotone line-search in Riemannian optimization consists in find-

ing hk as the smallest nonnegative integer such that

f(Rxk(λkσ
hkdk)) 6 max

16j6min{k+1,M}
{f(xk+1−j)}+ γσhkλk〈gk, dk〉xk . (3.2)

We now give our main result on the global convergence of the nonmonotone Armijo line-
search in Riemannian optimization when the search direction dk satisfies a general set of suitable
conditions as, e.g., that of being gradient-related. The proof closely follows and generalizes the
ones of [16], [8] and [29], where the case M = Rn is considered.

Theorem 3.1. Let M be a Riemannian manifold with metric 〈·, ·〉x at x ∈ M, and let R
be a retraction on M whose domain is the whole tangent bundle. Let f : M → R be a smooth
function and x0 ∈M be such that M(x0) := {x ∈M : f(x) 6 f(x0)} is a compact set.

Let {xk} ⊂ M be a sequence defined by

xk+1 = Rxk(αkdk), k = 0, 1, 2, . . .

with αk ∈ R and dk ∈ TxkM, and let gk denote the Riemannian gradient of f at xk. Let σ ∈
(0, 1), γ ∈ (0, 1), M be a nonnegative integer and {λk} be a sequence such that 0 < a 6 λk 6 b,
where a and b are independent of k. Assume that:

(a) dk is a descent direction, that is, 〈gk, dk〉xk < 0 for each k;
(b) the sequence {dk} is gradient-related, namely, for any subsequence {xk}k∈K of {xk}

that converges to a nonstationary point of f , the corresponding subsequence {dk}k∈K is
bounded and satisfies

lim sup
k∈K

〈gk, dk〉xk < 0;
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(c) for any subsequence {xk}k∈K of {xk} that converges to a stationary point, then there
exists a subsequence {dk}k∈K2 of {dk}, with K2 ⊂ K, such that

lim
k∈K2

dk = 0;

(d) αk = σhkλk, where, for each k, hk is the smallest nonnegative integer such that

f(Rxk(σhkλkdk)) 6 max
16j6min{k+1,M}

{f(xk+1−j)}+ γσhkλk〈gk, dk〉xk . (3.3)

Then every limit point of the sequence {xk} is stationary.

We prove the theorem using a few lemmas.
Lemma 3.2. In the hypotheses of Theorem 3.1, for j = 1, 2, 3, . . . let

Vj = max{f(xjM−M+1), f(xjM−M+2), . . . , f(xjM )},

and ν(j) ∈ {jM −M + 1, jM −M + 2, . . . , jM} be such that

f(xν(j)) = Vj .

Then,

Vj+1 6 Vj + γαν(j+1)−1〈gν(j+1)−1, dν(j+1)−1〉xν(j+1)−1
, (3.4)

for all j = 1, 2, . . . .
Proof. We prove that, for ` = 1, 2, . . . ,M , and for all j = 1, 2, . . ., we have

f(xjM+`) 6 Vj + γαjM+`−1〈gjM+`−1, djM+`−1〉xjM+`−1
6 Vj . (3.5)

Observe that from assumption (a) and the definition of αjM+`−1 and γ we have the latter
inequality.

For any j, the case ` = 1 follows by the nonmonotone line-search assumption (d), while
assuming that the statement is true for any `′ < `, with 1 < ` 6M , we can write

f(xjM+`) 6 max{f(xjM−M+`), . . . , f(xjM ), f(xjM+1), . . . , f(xjM+`−1)}
+ γαjM+`−1〈gjM+`−1, djM+`−1〉xjM+`−1

.

Since f(xjM−M+`), . . . , f(xjM ) 6 Vj by definition and f(xjM+1), . . . , f(xjM+`−1) 6 Vj by in-
ductive hypothesis, we have that (3.5) holds for `.

Since xν(j+1) = xjM+` for some ` ∈ {1, . . . ,M}, the inequality (3.4) follows from (3.5).

Let us define

K = {ν(1)− 1, ν(2)− 1, . . . }, (3.6)

and observe that ν(j) < ν(j + 1) < ν(j) + 2M .

Lemma 3.3. In the hypotheses of Theorem 3.1 and with K as in (3.6), every limit point of
{xk}k∈K is stationary.

Proof. Since f is bounded in M(x0) = {x ∈ M : f(x) 6 f(x0)} and it is monotone in
{xk+1}k∈K , there exists f̄ such that limk∈K f(xk+1) = f̄ . Taking the limit of both sides of (3.4),
and using the assumption (a) of Theorem 3.1, we get

lim
j→∞

γαν(j+1)−1〈gν(j+1)−1, dν(j+1)−1〉xν(j+1)−1
= 0,
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that is

lim
k∈K

αk〈gk, dk〉xk = 0. (3.7)

By contradiction, assume that there exists a nonstationary limit point, namely, there exists
K2 ⊂ K such that limk∈K2 xk = x∗ and g(x∗) 6= 0.

Since dk is gradient-related by assumption (b), there existsK3 ⊂ K2 such that limk∈K3
〈gk, dk〉xk

exists and is a negative number. Thus, limk∈K3
αk = 0, in view of (3.7).

Since λk > a > 0, the condition limk∈K3
αk = 0 implies that, for a sufficiently large k ∈ K3,

say for k ∈ K4 ⊂ K3, we have hk > 1, and thus condition (3.3) is not verified for α′k = αk/σ.
We have found a sequence {α′k}k∈K4 such that limk∈K4 α

′
k = 0 and

f
(
Rxk(α′kdk)

)
> max

16j6min{k+1,M}
{f(xk+1−j)}+ γα′k〈gk, dk〉xk > f(xk) + γα′k〈gk, dk〉xk , k ∈ K4.

(3.8)
By taking a subsequence K5 ⊂ K4 we may assume that every point {xk}k∈K5 and x∗ belong to
a single coordinate chart.

By the previous relation (3.8), the fact that Rx(0) = x for x ∈ M, and the mean value
theorem applied to the smooth function f ◦Rxk : TxkM→ R, there exists ξk ∈ (0, α′k), such that

f
(
Rxk(α′kdk)

)
− f

(
Rxk(0)

)
α′k

= D(f ◦Rxk)(ξkdk)[dk]

= Df(Rxk(ξkdk))[DRxk(ξkdk)[dk]]

= 〈g(Rxk(ξkdk)), DRxk(ξkdk)[dk]〉Rxk (ξkdk) > γ〈gk, dk〉xk .

(3.9)

Since dk is bounded by assumption (b), there exists K6 ⊂ K5 such that limk∈K6 dk = d 6= 0 and
thus limk∈K6

ξkdk = 0, and since the retraction Rx(v) is smooth as a function of both x and v,
we have limk∈K6

Rxk(ξkdk) = Rx∗(0) = x∗ and limk∈K6
DRxk(ξkdk)[dk] = DRx∗(0)[d] = d.

Finally, since f and the Riemannian metric are smooth, using the chart where the sequence
and x∗ lie, and taking limits on the last line of (3.9) we get

lim
k∈K6

〈g(Rxk(ξkdk)), DRxk(ξkdk)[dk]〉Rxk (ξkdk) = 〈g(x∗), d〉x∗ > γ〈g(x∗), d〉x∗ .

Now we have (1 − γ)〈g(x∗), d〉x∗ > 0, with γ ∈ (0, 1), and on the other hand, by the choice of
K3, 〈g(x∗), d〉x∗ < 0 which leads to a contradiction.

Lemma 3.4. In the hypotheses of Theorem 3.1, let K(`) for ` > 0 be the set {k+ `, k ∈ K}.
For each ` > 0, every limit point of {xk}k∈K(`) is stationary.

Proof. We give a proof by induction on `. Since K(0) = K, the case ` = 0 is Lemma 3.3.
We assume that the property is true for K(`) and we prove it for K(` + 1). Let x∗ be a

limit point of {xk}k∈K(`+1), namely, there exists H1 ⊂ K(`+ 1) such that limk∈H1 xk = x∗; we

want to prove that x∗ is stationary. The sequence {xk−1}k∈H1
belongs to the compact setM(x0)

and thus it has a subsequence {xk−1}k∈H2
, with H2 ⊂ H1, converging to a certain limit point y.

By inductive hypothesis, since {xk−1}k∈H2
is a subsequence of {xk}k∈K(`), we have that y is a

stationary point.
By assumption (c), there exists H3 ⊂ H2 such that limk∈H3 dk−1 = 0, and since αj 6 λj 6 b

for any j, we have

x∗ = lim
k∈H3

xk = lim
k∈H3

Rxk−1
(αk−1dk−1) = Ry(0) = y;

hence, x∗ is stationary.
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Proof. (of Theorem 3.1). Since {1, 2, . . .} =
⋃2M
`=0K(`), one can see that for any sequence

{xk}k∈K0
converging to x∗, there exists 0 6 ̂̀6 2M such that infinitely many terms of {xk}k∈K0

belong to {xk}k∈K(̂̀), that is, there exists K00 ⊂ K0∩K(̂̀) such that limk∈K00
xk = x∗. Since the

sequence {xk}k∈K00
belongs to {xk}k∈K(̂̀), using Lemma 3.4, we conclude that x∗ is a stationary

point.

A few remarks on the assumptions of Theorem 3.1 are in order. Provided that xk is not
stationary for all k, assumptions (a)-(c) are always fulfilled for non-finite sequences generated
by a gradient-type algorithm, being dk = −gk. The requirement that M(x0) is a compact set is
natural in nonlinear minimization. The strongest hypothesis is that the retraction R has to be
defined in the whole tangent bundle. This occurs in several practical cases, but it is not always
the case. On the other hand, in order to apply the algorithm and prove its global convergence,
we only need that for each k, Rxk(tdk) is defined for t ∈ [0, λk]; this might be true also if R is
not globally defined.

4. The Riemannian Barzilai-Borwein method. In this section we propose an adap-
tation of the Euclidean BB method to the solution of the Riemannian manifold optimization
problem (1.1). The BB method belongs to the class of first-order (or gradient-type) optimization
algorithms, namely algorithms that only use the gradient of the cost function, while disregarding
the Hessian (second-order information). Given the problem

min
x∈Rn

f(x),

where f : Rn → R is a given smooth cost function, the simplest gradient-type method is a line-
search method based on the steepest descent direction: given x0 ∈ Rn, the algorithm generates
a sequence {xk}k with

xk+1 = xk − αk∇f(xk), (4.1)

where αk is a suitable step-length. The majority of gradient-type methods are also descent
methods, that is, {xk}k is built so that the cost function decreases monotonically on {xk}k, i.e.,
f(xk+1) < f(xk) for all k, unless the sequence converges in a finite number of steps. The ideal
step-length αk satisfies

αk = argmin
α

f(xk − α∇f(xk)) (4.2)

(‘exact line-search’); however this value is usually unnecessarily expensive to compute for a
general nonlinear cost function f . More practical strategies perform an ‘inexact’ line-search to
identify a step-length that achieves adequate reductions in f at minimal cost.

The steepest-descent method with exact line-search is commonly considered ineffective be-
cause of its slow convergence rate and its oscillatory behaviour, that has been completely under-
stood and studied in the convex quadratic case, see [27].

The BB method provides an alternative strategy for the choice of the step-length; while it
does not guarantee the cost function decrease at each step, in some problems, it yields impressive
good practical performance. The basic idea of the BB method is to solve, for k > 1, the least-
squares problem

min
t
‖skt− yk‖2, (4.3)

with sk := xk+1 − xk and yk := ∇f(xk+1) −∇f(xk), which, assuming that xk+1 6= xk, has the
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unique solution t =
sTk yk
sTk sk

. When sTk yk > 0, the BB step-length is chosen to be

αBBk+1 =
sTk sk
sTk yk

. (4.4)

The overdetermined system skt = yk is in fact a Quasi-Newton secant equation of the type

Ak+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk),

where we require the matrix Ak+1 ∈ Rn×n to be a scalar multiple of the identity matrix, and
then treat it as a linear least-squares problem. The Quasi-Newton method thus results in a
gradient-type method where second-order information is implicitly embedded in the step-length
through a cheap approximation of the Hessian.

As in the Euclidean case, the idea of the Riemannian BB method is to approximate the
action of the Riemannian Hessian of f at a certain point by a multiple of the identity.

At the (k + 1)-st step, the Hessian is a linear map from Txk+1
M to Txk+1

M. Instead of the
increment xk+1− xk, we can consider the vector ηk = −αkgk belonging to TxkM, and transport
it to Txk+1

M, yielding

sk := Tηk(ηk) = Txk→xk+1
(−αkgk) = −αkTxk→xk+1

(gk). (4.5)

We assume here that a vector transport between xk and xk+1 exists.
To obtain yk we need to subtract two gradients that lie in two different tangent spaces. To

be coherent with the manifold structure and to work on Txk+1
M, this difference should be made

after gk is transported to Txk+1
M so that

yk := gk+1 − Txk→xk+1
(gk) = gk+1 +

1

αk
Tηk(ηk). (4.6)

Imposing a scalar multiple of the identity as the approximation of the Hessian, the Rieman-
nian counterpart of the secant equation (4.3) can be written again as

skt = yk,

in the unknown t ∈ R. The least-squares approximation with respect to the metric of Txk+1
M

yields t =
〈sk,yk〉xk+1

〈sk,sk〉xk+1
. Therefore the Riemannian BB step-length has the form

αBBk+1 =
〈sk, sk〉xk+1

〈sk, yk〉xk+1

, (4.7)

provided that 〈sk, yk〉xk+1
> 0.

Remark 4.1. Alternative strategies for the BB step-length have been proposed in Euclidean
optimization, see e.g. [2, 11, 30, 15]. A standard choice is the step-length obtained by considering
the least-square problem mint ‖sk − ykt‖2 ([2]) that, by symmetry with respect to (4.3), yields
the Riemannian BB step-length

αBBk+1

′
=
〈sk, yk〉xk+1

〈yk, yk〉xk+1

, (4.8)

or the one obtained by alternating αBBk+1 and αBBk+1

′
.
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Remark 4.2. As opposed to the Euclidean case, different alternatives are available for yk.
For instance, we can do the subtraction at TxkM after gk+1 is transported over there. Or, we can
transport the two vectors to the tangent space at any point of the geodesic joining xk and xk+1,
or even at any point of the manifold reachable from xk and xk+1 through a vector transport. All
these alternatives for yk lead to different versions of the Riemannian BB method.

Yet another possibility is to avoid completely the vector transport, identifying TxkM with
Txk+1

M and then approximating the transport with the identity. This approximation is justified
by the property T0x(v) = v, where v, 0x ∈ TxM (see [1]), but it is not recommended if one wants
to preserve the structure.

4.1. The globalized Riemannian Barzilai-Borwein algorithm. Algorithm 1 summa-
rizes the main steps of the Riemannian BB method with a nonmonotone line-search strategy.
Here αBBk plays the role of λk used in Section 3 and its updating at Step 5 follows [8]. Moreover,
we assume that a retraction R and a transport vector T mapping are supplied for the manifold
under consideration.

Algorithm 1 (The Riemannian Barzilai-Borwein with nonmonotone line-search (RBB-
NMLS) algorithm). Set the line-search parameters: the step-length reduction factor σ ∈ (0, 1);
the sufficient decrease parameter γ ∈ (0, 1); the integer parameter for the nonmonotone line-
search M > 0; the upper and lower bounds for the step-length αmax > αmin > 0.
Set the initial values: the starting point x0 ∈M; the starting step-length αBB0 ∈ [αmin, αmax].

1. Compute f0 = f(x0) and g0 = ∇(R)f(x0).
2. For k = 0, 1, 2, . . .

find the smallest h = 0, 1, 2, . . . such that

f(Rxk(−σhαBBk gk)) 6 max
16j6min{k+1,M}

fk+1−j − γσhαBBk 〈gk, gk〉xk

and set αk := σhαBBk .
3. Compute xk+1 = Rxk(−αkgk), fk+1 = f(xk+1) and gk+1 = ∇(R)f(xk+1).
4. Compute yk and sk as in (4.6) and (4.5), respectively.

5. Set τk+1 =
〈sk,sk〉xk+1

〈sk,yk〉xk+1
.

6. Set

αBBk+1 =

{
min

{
αmax,max

{
αmin, τk+1

}}
if 〈sk, yk〉xk+1

> 0,
αmax otherwise.

We point out that τk+1 can be choose using alternative strategies, as mentioned in in Remark
4.1. Moreover, the backtracking strategy considered in Step 2 of Algorithm 1 could be slightly
generalized without affecting the global convergence. In particular, the contraction factor σ
could vary at each iteration of the line-search and, for example, could be chosen by safeguarded
interpolation, see Sec. 3.5 in [27].

If xk is not a stationary point, then assuming that Rxk(−αgk) is defined for α > 0, by the
mean value theorem (compare equation (3.9)), there exists ξ ∈ (0, α), such that

f(Rxk(−αgk))− f(xk)

α
+ γ〈gk, gk〉xk

=
〈
g(Rxk(−ξgk)), DRxk(−ξgk)[−gk]

〉
Rxk (−ξgk)

+ γ〈gk, gk〉xk
α→0→ (γ − 1)〈gk, gk〉xk < 0,

since γ < 1. Thus, for α sufficiently small, we have

f(Rxk(−αgk)) 6 f(xk)− γ α〈gk, gk〉xk 6 max
16j6min{k+1,M}

{f(xk+1−j)} − γ α〈gk, gk〉xk ,
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that is, the nonmonotone Armijo’s condition at Step 2 of Algorithm 1 is verified after a finite
number of step reductions.

The practical implementation of the various steps strictly depends on the structure of the
cost function f and of the underlying manifold M; further details will be discussed in the next
section for the computation of the matrix geometric mean. Other implementation issues are
postponed to Section 6.

We remark that the use of the nonmonotone strategy requires the additional cost of evaluat-
ing the cost function at each trial point x̃k (Step 3). Indeed, a ‘pure’ BB algorithm (i.e., without
line-search) consists in setting xk+1 = Rxk(−αBBk gk) without computing αk at Step 2. We will
refer to RBB-NMLS and to RBB to indicate the Riemannian BB algorithm with and without
nonmonotone line-search, respectively. Finally, note that if M = 1 then Algorithm 1 corresponds
to the standard (monotone) line-search with Armijo’s rule.

5. Computing the Karcher mean of positive definite matrices. In this section we
recall the Riemannian optimization problem whose solution is the Karcher mean of positive
definite matrices, and propose the adaptation of the RBB method for this problem.

First, we describe the set of positive definite matrices as a Riemannian manifold. Let Pn
denote the set of positive definite matrices of size n and Hn denote the real vector space of
Hermitian matrices. The set Pn is an open subset of the Euclidean space Hn (with the scalar
product 〈E,F 〉 = trace(EF ) for E,F ∈ Hn) and thus it is a differentiable manifold with T (Pn)X
isomorphic to Hn for each X ∈ Pn.

Two main Riemannian structures on Pn are commonly used in the literature: the first one
is obtained by the Euclidean scalar product of Hn at each point X ∈ Pn, the second is the one
induced by the scalar product

〈E,F 〉X = trace(X−1EX−1F ), E, F ∈ Hn, X ∈ Pn (5.1)

see Ch. XII in [22] and Sec. 6.3 in [25]. Since the first structure is trivial and the second one
does not have an established name, in the following we will refer to the second geometry as the
Riemannian structure of Pn.

The scalar product (5.1) induces a metric on Pn such that the distance between A,B ∈ Pn is

δ(A,B) = ‖ log(A−1/2BA−1/2)‖F , (5.2)

where ‖ · ‖F is the Frobenius norm. The resulting metric space is complete [3], simply connected
and with nonpositive curvature, thus it is an example of Cartan-Hadamard manifold.

There exists a unique geodesic joining A and B in Pn and whose natural parametrization is

γ(t) = A(A−1B)t = A1/2(A−1/2BA−1/2)tA1/2 =: A#tB, t ∈ [0, 1],

see [23]. Notice that the geodesic can be indefinitely extended for t ∈ R.
A nice feature of this geometry is that for any set of matrices A1, . . . , Am ∈ Pn, there exists

unique X ∈ Pn that minimizes the function

f(X) := f(X;A1, . . . , Am) =

m∑
k=1

δ2(X,Ak). (5.3)

This point is called matrix geometric mean or Karcher mean of A1, . . . , Am and it is established
as the geometric mean of matrices. Therefore, we state the problem of computing the Karcher
mean as the problem of minimizing the above function f over the manifold Pn. A class of
algorithms developed for this problem can be found in [5] and in [20].
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Since the cost function f in (5.3) is smooth, the corresponding derivative can be computed
and two different gradients can be defined, one for each considered geometry, i.e. the Euclidean
and Riemannian geometry.

A tedious computation proves that the gradient with respect to the Euclidean geometry,
that is the unique matrix ∇(E)f(X) such that Df(X)[H] = trace(∇(E)f(X)H), is

∇(E)f(X) = 2

m∑
k=1

X−1 log(XA−1k ).

While gradient with respect to the Riemannian structure, namely the Riemannian gradient,
defined as the unique Hermitian matrix ∇(R)f(X) such that Df(X)[H] = 〈∇(R)f(X), H〉X , for
H ∈ Hn, turns out to be

∇(R)f(X) = −2

m∑
k=1

X log(X−1Ak) (5.4)

see [24]. Notice that ∇(E)f(X) = 0 if and only if ∇(R)f(X) = 0.
An interesting property of the Riemannian geometry of Pn is that the function f in (5.3)

is geodesically strictly convex with respect to the Riemannian geometry of Pn, that is for any
A,B ∈ Pn, with A 6= B, we have (see [3])

f(A#tB) < (1− t)f(A) + tf(B), t ∈ (0, 1);

on the contrary, it can be shown that f is not convex in the Euclidean sense.
The application of Algorithm 1 for the Karcher mean computation requires the definition of

the retraction R and transport vector T mappings for the manifold Pn.
Since the final point of a geodesic starting at A and with tangent vector V is A exp(A−1V ),

the retraction at point A has the form RA(V ) = A exp(A−1V ). It follows that the iterate update
of RBB is

Xk+1 = RXk(−αBBk gk) = Xk exp(−αBBk X−1k gk), (5.5)

where αBBk is defined by (4.7) (or in an alternative way as discussed in Remark 4.1) and sk and
yk are given below.

Notice that the retraction (5.5) is the exponential map with respect to the Riemannian ge-
ometry of Pn, and thus the vector transport is given by the parallel transport. In the Riemannian
geometry of Pn, the parallel transport of a vector V ∈ Hn from the tangent space at A to the
tangent space at B is given by (see [32])

TA→B(V ) = (BA−1)1/2V (A−1B)1/2.

Notice that the parallel transport is a congruence of the type MVM∗, with M = (BA−1)1/2.
Using the vec(·) operator which stacks the columns of a matrix into a long vector and the

Kronecker product, we get the simple expression

TA→B vec(V ) = (M ⊗M) vec(V ), M = (BA−1)1/2.

Alternatively, we can also write TA→B = (A#1/2B)A−1V A−1(A#1/2B).
In view of (4.5) and (4.6), it is sufficient to transport a vector along itself, or, equivalently,

along the geodesic tangent to it. We now derive the formula for this case that is simpler than
those above.
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Let VA ∈ TAPn and let B := RA(VA) = A exp(A−1VA), then A−1B = exp(A−1VA) and

TVA(VA) = TA→B(VA) = A(A−1B)1/2A−1VA(A−1B)1/2

= A exp(A−1VA)1/2A−1VA exp(A−1VA)1/2 = VAA
−1RA(VA) = VA exp(A−1VA), (5.6)

where we have used standard properties of matrix functions (compare Theorem 1.13 in [18]).
The formula (5.6) yields a simple expressions for sk and yk of equations (4.5) and (4.6),

respectively,

sk = −αkgk exp(−αkX−1k gk), yk = gk+1 − gk exp(−αkX−1k gk),

that characterize the Riemannian BB method for the Karcher mean computation.
As a final remark we observe that the retraction used in the Riemannian geometry of the

positive definite matrices is defined in the whole tangent bundle and that, for any X0 ∈ Pn, the
level set M(X0) = {X ∈ Pn : f(X) 6 f(X0)} is a compact set (compare the proof of Theorem
2.1 in [7]). Thus, this problem fits the hypotheses of Theorem 3.1.

5.1. Implementation of the RBB method for the Karcher mean. The RBB method
requires the computation of several quantities of the type Aϕ(A−1B), where A is positive definite,
B is Hermitian and ϕ is a real function. This is indeed the case for the Riemannian gradient
(5.4) and the retraction (5.5), while formula (5.6) is fairly similar.

Following [19], these quantities can be efficiently computed by forming the Cholesky factor-
ization of A = R∗ARA. Using the similarity invariance of matrix functions, we write

Aϕ(A−1B) = R∗ARAϕ(R−1A (R∗A)−1B) = R∗Aϕ((R∗A)−1BR−1A )RA,

and observe that (R∗A)−1BR−1A = UDU∗, where D = (dij) is diagonal real and U is unitary, so
that we obtain

Aϕ(A−1B) = R∗AU diag(ϕ(d11), . . . , ϕ(dnn))U∗RA.

The cost of this basic operation is approximately γ1n
3, where γ1 is a moderate constant.

Since one step of the RBB algorithm requires m + 1 evaluations of the type Aϕ(A−1B)
(m are needed to compute the gradient and one for the retraction), the cost of the algorithm
is about γ1(m + 1)n3k arithmetic operations (ops), where k is the number of steps needed to
achieve convergence, while m is the number of matrices and n is their size. For comparison, the
Richardson algorithm in [5], the steepest descent with fixed step-length and the Majorization-
Minimization algorithm in [34] have essentially the same cost.

Regarding the cost of the version of the RBB algorithm with the nonmonotone line-search,
we need to take into account the number of ops needed to compute the distance (5.2) during
the cost function evaluation. By a similar use of Cholesky factorizations and an eigenvalue
computation, the distance can be computed with γ2n

3 ops, where γ2 is smaller than γ1. Overall,
the cost function evaluation requires γ2mn

3 ops. This is not negligible with respect to the cost
of a single step of the RBB algorithm. Hence algorithms without line-search are usually more
effective, when the performed number of steps is the same.

6. Experiments. In this section we explore the behaviour of the Riemannian BB method
(RBB) and the Riemannian BB method with nonmonotone line-search (RBB-NMLS) for the
solution of various optimization problems on Riemannian manifolds.

Section 6.1 is devoted to the computation of the Karcher mean of a set of positive definite
matrices. To this purpose, we consider several test matrices constructed with the random function
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of the Matrix Means Toolbox ([6]). These tests have been performed using MATLAB R2011b
on a machine with a Double Intel Xeon X5680 Processor with 24 GB of ram.

Experiments in Section 6.2 are carried out using Manopt 1.0.7 ([10]), a toolbox which provides
a large library of manifolds and ready-to-use Riemannian optimization algorithms together with
the flexibility of including user-defined solvers. The experiments are run using MATLAB R2015a
on a machine with Double Intel Xeon E5-2640 v2 Processor and 128 GB of DDR3 ram.

6.1. Tests on the Karcher Mean computation. We investigate the performance of
RBB (RBB) in comparison with four other first-order optimization algorithms for computing the
Karcher mean of positive definite matrices: the Richardson iteration (Richardson) proposed in
[5], the Majorization-Minimization algorithm (MajMin) of [34] and the standard Steepest-Descent
(SD) and the Fletcher-Reeves variant of the Conjugate Gradients (CG FR) algorithms described
in [10, 20]. Comparisons with the (Euclidean) Barzilai-Borwein algorithm (BB NoRiem) are also
included.

For the SD and the CG FR algorithms we implemented the Riemannian Armijo’s line search
(3.1), where the parameters λk = 1, σ = 0.5 and γ = 0.5, are chosen in accordance with [20];
the maximum number of reductions has been set to 10. For the Conjugate Gradient algorithm
we have chosen the Fletcher-Reeves variant because in our experience it showed lightly better
results. The implementation of the standard Barzilai-Borwein algorithm (BB NoRiem) consists in
using the Euclidean gradient as a search direction, avoiding the parallel transport and using the
Euclidean scalar product in the definition of αk; moreover, in order to ensure that all iterates
are positive definite, the iteration update has been performed using the retraction, i.e. setting
Xk+1 = Rxk exp(−αkgk).

We compare the number of iterations needed for the convergence since all algorithms require
roughly the same computational cost at each step, with the exception of SD and CG FR where
some extra cost function evaluations are needed.

RBB has been implemented following Algorithm 1. We have considered only the RBB without
nonmonotone line-search, since we have noticed that for this problem the line-search is not
required. The first step-length αBB0 for the RBB has been chosen using the strategy of the
Richardson iteration in [5]. The step-length has been computed using (4.7) in both RBB and
RBB NoRiem. The updating (4.8) and the alternating strategy for the step-length described in
Remark 4.1 have been tested as well, giving essentially the same results (not report here).

As a first test, we consider the three matrices

A1 =

 1.0 0.2 −0.6
0.2 3.1 −0.7
−0.6 −0.7 1.7

 , A2 =

 1.8 0.05 0.2
0.05 0.5 −0.6
0.2 −0.6 1.5

 , A3 =

 0.8 0.5 −0.5
0.5 1.5 0.2
−0.5 0.2 1.4

 , (6.1)

and we run the algorithms for the Karcher mean for a fixed number of steps and with no stopping
criterion. At each step of each algorithm, we compute the relative error of the current value Xk,
that is

εk =
‖Xk −K‖2
‖K‖2

,

where K is a reference value of the Karcher mean obtained using variable precision arithmetic
in MATLAB and rounded to 16 significant digits. The results are presented in Figure 6.1 and
show that RBB works very well in this example and outperforms the other first-order algorithms.
Notice that BB NoRiem does not exploit the geometric structure of the problem and then gives
worse results, converging in a nonmonotone way and in a larger number of steps.

As a second test, we investigate how convergence depends on the initial value. We consider
the matrices (6.1) with four different initial values: the arithmetic mean of the data, the Cheap
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Fig. 6.1. Comparison of different first-order Riemannian optimization methods and the (Euclidean) Barzilai-
Borwein algorithm for the Karcher mean of the matrices in (6.1).

mean of the data, known to be a good approximation of the Karcher mean ([4]), one of the data
matrices and an ill-conditioned matrix of norm 1. The results are presented in Figure 6.2. The
relative behaviour of the methods is mostly independent of the initial value in the later phase,
while there can be some difference in the early steps. In all cases RBB performs better than the
other methods. The step-length choice of the Richardson method is based on optimizing the rate
of convergence near the fixed point (see [5]) and therefore the method is penalized whenever the
initial value is far from the Karcher mean.

As a third test, we run the algorithms on 4 different data sets:

1. 100 random 10 × 10 matrices, obtained with the command random(10) of the Matrix
Means Toolbox;

2. 10 random 100× 100 matrices, obtained with the command random(100);
3. 10 ill-conditioned 10× 10 matrices, with condition number 105, obtained with the com-

mand random(10,2,1e5);
4. 10 ill-conditioned 10 × 10 matrices clustered far from the identity, obtained with the

command random(10,2,1e5)*0.01+A, where A is a fixed matrix generated as in data
set 3.

In Figure 6.3, we show the relative error with respect to a reference approximation of the Karcher
mean computed with variable precision arithmetic.

We observe that RBB convergence behaviour is always the best, while performance of Richardson,
MajMin, SD and CG FR depends on the test case. In particular, failures of SD and CG FR are due
to the computation of tiny steps that prevent progress in the iteration.

We remark that, since the data are randomly generated, each test has been repeated several
times and we have always obtained the qualitative behavior shown in Figure 6.3.
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Fig. 6.2. Comparison of different first-order optimization methods for the Karcher mean of the matrices in
(6.1), using different initial values: the arithmetic mean (top-left), the Cheap mean (top-right), one of the data
matrices (bottom-left) and a matrix with large condition number and unit norm (bottom-right).

6.2. Testing RBB using Manopt. We consider the trust-region (TR) and steepest-descent
(with monotone line-search and Armijo step-length) (SD) algorithms available in Manopt 1.0.7
([10]) and, for comparison, we consider an implementation of our RBB algorithm obtained by
modifying the steepest descent implementation of Manopt. This allows us to use the execution
time as a fair measure of algorithmic comparison. In our tests, we use the RBB method without
line-search (RBB) and with nonmonotone line-search (RBB-NMLS) as described in Algorithm 1
both using the step-length (4.7). Default parameters, stopping criteria and starting guess choices
provided in Manopt have been used.

Regarding the parameter setting of RBB-NMLS, we set M = 10, γ = 10−4, αmin = 10−3,
αmax = 103 and σ = 0.5 in Algorithm 1, as indicated in [8]. The vectors sk and yk at Step 6 are
computed using the vector transport functions provided by Manopt for both RBB and RBB-NMLS.
Moreover, the initial αBB0 is chosen so that the first trial point x̃1 is the same as the one computed
by SD.

We consider all test problems available in [10] and follow the formulations and implementa-
tions provided therein. In particular, Table 6.1 summarizes the test problems together with a
brief description and the various tested sizes.

Table 6.2 collects the results in terms of average number of iterations ‘Av-it’, average exe-
cution time in seconds ‘Av-cpu’ and number of failures ‘F’ computed over 10 repeated runs. In



16 B. Iannazzo and M. Porcelli

10 20 30 40

10
−15

10
−10

10
−5

10
0

 

 

10 20 30 40 50 60 70

10
−15

10
−10

10
−5

10
0

 

 

20 40 60 80

10
−15

10
−10

10
−5

10
0

 

 

5 10 15 20

10
−15

10
−10

10
−5

10
0

 

 

Richardson
RBB
MajMin
SD
CG FR

Richardson
RBB
MajMin
SD
CG FR

Richardson
RBB
MajMin
SD
CG FR

Richardson
RBB
MajMin
SD
CG FR

Fig. 6.3. Comparison of different first-order optimization methods for the Karcher mean using different data
sets: 100 random 10×10 matrices (top-left), 10 random 100×100 matrices (top-right), 10 ill-conditioned 10×10
matrices (bottom-left) and 10 ill-conditioned 10× 10 matrices clustered far from the identity (bottom-right).

the presence of failures within the 10 runs, the average values are computed taking into account
successful runs for all solvers only. The overall number of runs is 240.

The comments below follow from Table 6.2:

• As expected, the use of the nonmonotone strategy makes the RBB procedure much more
robust: overall RBB and RBB-NMLS fail 33 and 3 times, respectively. Clearly, when RBB is
successful, that is, the nonmonotone strategy is not needed and therefore not activated
in RBB-NMLS, RBB is faster than RBB-NMLS since there is no need to compute and store
the cost function at each iteration.

• Focusing on first-order procedures, the use of the BB step-length significantly enhances
the speed of convergence of the gradient-type algorithms: on average SD takes much
more iterations than RBB and RBB-NMLS resulting in a much higher computational time.
This behaviour is especially evident in the solution of KM where Av-cpu of SD is at least
a factor 6 of the same value of RBB.

• Regarding the comparison of RBB with the second-order procedures, we note that the
behaviour of TR and RBB-NMLS is comparable. For KM and increasing values of n, RBB
is faster than TR since, as expected, the computation of the Hessian of the problem cost
function becomes increasingly costly.
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Name Size Description Manifold
KM n = 50 Computing the Karcher Mean of a

n = 100 set of n× n positive definite matrices. SPD
n = 200

SPCA n = 100, p = 10,m = 2 Computing the m Sparse Principal
n = 500, p = 15,m = 5 Components of a p× n matrix Stiefel
n = 1000, p = 30,m = 10 encoding p samples of n variables.

SP n = 8 Finding the largest diameter of n equal circles Product
n = 12 that can be placed on the sphere without of
n = 24 overlap (the Sphere Packing problem). Spheres

DIS n = 128 Finding an orthonormal basis of the
n = 500 Dominant Invariant 3-Subspace of an Grassmann
n = 1000 n× n matrix.

LRMC n = 100, p = 10,m = 2 Low-Rank Matrix Completion: given partial fixed-rank
n = 500, p = 15,m = 5 observation of an m× n matrix matrices
n = 1000, p = 30,m = 10 of rank p, attempting to complete it.

MC n = 20 Max-Cut: given an n× n Laplacian matrix SPD
n = 100 of a graph, finding the max-cut, or an matrices of
n = 300 upper-bound on the maximum-cut value. rank 2

TSVD n = 60,m = 42, p = 5 Computing the SVD decomposition of an
n = 100,m = 60, p = 7 m× n matrix truncated to rank p. Grassmann
n = 200,m = 70, p = 8

GP m = 10, N = 50 Generalized Procrustes: rotationally align Product of rotations
m = 50, N = 100 clouds of points. Data: matrix A ∈ R3×m×N , with the Euclidean
m = 50, N = 500 each slice is a cloud of m points in R3. space for A

Table 6.1
Test problems and manifold structure provided in Manopt.

TR SD RBB RBB-NMLS

Av-it Av-cpu F Av-it Av-cpu F Av-it Av-cpu F Av-it Av-cpu F
2.0 3.3 0 11.1 28.5 0 3.0 2.3 0 3.0 3.6 0

KM 2.9 66.7 0 12.8 252.1 0 3.0 41.7 0 3.0 55.5 0
4.0 1649.7 0 14.3 5875.5 0 4.0 747.7 0 4.0 1017.0 0

13.6 0.2 0 62.6 0.4 0 57.0 0.2 0 41.3 0.3 0
SPCA 22.8 0.5 0 - - 10 92.4 0.4 0 89.1 0.5 0

37.1 1.2 0 - - 10 211.7 0.9 0 210.1 1.4 0
416.14 4.7 0 1175.7 5.9 0 479.8 1.6 0 641.8 3.4 0

SP 408.6 5.1 0 1160.2 5.9 0 738.1 2.5 0 828.6 4.1 0
314.3 4.9 0 1615.6 8.5 0 1461.3 5.1 0 1083.6 5.7 0
10.0 0.2 0 3601.0 0.6 1 96.7 0.1 0 100.4 0.2 0

DIS 12.2 0.4 0 - - 10 204.2 0.3 0 290.1 0.7 0
12.9 0.9 0 - - 10 280.6 0.7 0 398.1 1.4 0
6.6 0.4 0 79.9 0.7 0 44.1 0.3 0 44.1 0.4 0

LRMC 7.0 0.8 0 76.9 2.8 0 45.5 0.7 0 45.5 0.9 0
11.0 1.8 0 68.7 2.7 0 39.8 1.0 0 39.8 1.3 0
14.5 0.9 0 195.9 1.4 0 83.8 0.7 0 75.6 1.1 0

MC 28.8 0.8 0 747.4 4.3 5 336.8 1.4 0 235.6 1.4 0
54.6 2.8 0 - - 10 607.6 3.1 5 780.6 5.6 3
15.1 1.3 0 - - 10 177.8 1.9 4 202.5 1.4 0

TSVD 16.4 1.7 0 - - 10 149.0 1.0 5 182.2 1.5 0
18.0 2.02 0 - - 10 183.0 1.3 9 225.0 1.8 0
12.5 0.8 0 94.6 1.8 0 71.9 0.9 0 44.9 0.8 0

GP 14.4 1.0 0 45.5 1.2 0 103.4 1.6 1 30.8 0.7 0
14.0 1.9 0 140.0 6.1 0 93.5 2.6 8 49.0 1.8 0

Table 6.2
Results on problems in Table 6.1.
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Fig. 6.4. CPU time performance profiles on problems in Table 6.1.

We also summarize the results plotting the performance profile function πS defined as

πS(τ) =
number of problems s.t. qP,S 6 τ qP

number of problems
, τ > 1,

that is the probability for solver S that a performance ratio qP,S/qP is within a factor τ of the
best possible ratio ([12]). Here qP,S denotes computational effort of the solver S to solve problem
P and qP is computational effort of the best solver to solve problem P . Note that πS(1) is the
fraction of problems for which solver S performs the best, πS(2) gives the fraction of problems
for which the algorithm is within a factor of 2 of the best algorithm, and that for t sufficiently
large, πS(t) is the fraction of problems solved by S.

In Figure 6.4 we consider the total CPU time as measure of computational effort for the
compared solvers and plot πS(τ) for τ 6 6 in order to zoom the behaviour of the solver for small
value of τ . Therefore, we include in the legend the percentage of tests solved by each solver
(retrievable in the plot for large values of τ). We observe that RBB is the most efficient for the
60% of the runs, TR and RBB-NMLS are comparable in both robustness and efficiency and SD shows
the worst performance.

7. Conclusions. We have adapted the Barzilai-Borwein method to the framework of Rie-
mannian optimization. The resulting algorithm is competitive in several cases, since it requires
just first-order information, while it converges usually faster than other first-order algorithms
such as the steepest-descent method.

We have provided also a general convergence result for gradient-related Riemannian optimiza-
tion algorithms, when a nonmonotone line-search is considered. This strategy, can be applied, in
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particular, to guarantee global convergence of the Riemannian Barzilai-Borwein method, without
spoiling, in practice, its local convergence properties.

We have observed that when the Riemannian Barzilai-Borwein algorithm is used to compute
the matrix geometric mean, that is the Karcher mean of positive definite matrices, it works
surprisingly well, being superior to all other first-order optimization algorithms considered in
the literature. In particular, from all performed numerical tests, it seems that the algorithm
converges to the matrix geometric mean with a monotonic decrease of both the error and the
cost function, while the usual behaviour of the Barzilai-Borwein method is nonmonotone. In other
words, the nonmonotone line-search strategy has never been required in our tests on the matrix
geometric mean. At this time we do not have a theoretical justification of this phenomenon, but,
in our opinion, this behaviour hides a strong convergence property which needs to be further
investigated and could be the topic of a future work.
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